Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 353: 141597, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432466

RESUMO

The contamination of creek sediments near industrially nuclear dominated site presents significant environmental challenges, particularly in identifying and quantifying potentially toxic metal (loid)s (PTMs). This study aims to measure the extent of contamination and apportion related sources for nine PTMs in alpine creek sediments near a typical uranium tailing dam from China, including strontium (Sr), rubidium (Rb), manganese (Mn), lithium (Li), nickel (Ni), copper (Cu), vanadium (V), cadmium (Cd), zinc (Zn), using multivariate statistical approach and Sr isotopic compositions. The results show varying degrees of contamination in the sediments for some PTMs, i.e., Sr (16.1-39.6 mg/kg), Rb (171-675 mg/kg), Mn (224-2520 mg/kg), Li (11.6-78.8 mg/kg), Cd (0.31-1.38 mg/kg), and Zn (37.1-176 mg/kg). Multivariate statistical analyses indicate that Sr, Rb, Li, and Mn originated from the uranium tailing dam, while Cd and Zn were associated with abandoned agricultural activities, and Ni, Cu, and V were primarily linked to natural bedrock weathering. The Sr isotope fingerprint technique further suggests that 48.22-73.84% of Sr and associated PTMs in the sediments potentially derived from the uranium tailing dam. The combined use of multivariate statistical analysis and Sr isotopic fingerprint technique in alpine creek sediments enables more reliable insights into PTMs-induced pollution scenarios. The findings also offer unique perspectives for understanding and managing aqueous environments impacted by nuclear activities.


Assuntos
Metais Pesados , Urânio , Cádmio , Zinco , Manganês , Níquel , Estrôncio , Lítio , Medição de Risco , China , Metais Pesados/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos
2.
Environ Res ; 241: 117577, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37923109

RESUMO

The prevalence of toxic element thallium (Tl) in soils is of increasing concern as a hidden hazard in agricultural systems and food chains. In the present work, pure biochar (as a comparison) and jacobsite (MnFe2O4)-biochar composite (MFBC) were evaluated for their immobilization effects in Tl-polluted agricultural soils (Tl: ∼10 mg/kg). Overall, MFBC exhibited an efficient effect on Tl immobilization, and the effect was strengthened with the increase of amendment ratio. After being amended by MFBC for 15 and 30 days, the labile fraction of Tl in soil decreased from 1.55 to 0.97 mg/kg, and from 1.51 to 0.88 mg/kg, respectively. In addition, pH (3.05) of the highly acidic soil increased to a maximum of 3.97 after the immobilization process. Since the weak acid extractable and oxidizable Tl were the preponderantly mitigated fractions and displayed a negative correlation with pH, it can be inferred that pH may serve as one of the most critical factors in regulating the Tl immobilization process in MFBC-amended acidic soils. This study indicated a great potential of jacobsite-biochar amendment in stabilization and immobilization of Tl in highly acidic and Tl-polluted agricultural soils; and it would bring considerable environmental benefit to these Tl-contaminated sites whose occurrence has significantly increased in recent decades near the pyrite or other sulfide ore mining and smelting area elsewhere.


Assuntos
Poluentes do Solo , Tálio , Tálio/análise , Solo , Sulfetos , Poluentes do Solo/análise
3.
Sci Total Environ ; 913: 169542, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38141990

RESUMO

Thallium is a rare metal known for its highly toxic nature. Recent research has indicated that the precise determination of Tl isotopic compositions using Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP MS) provides new opportunities for understanding Tl geochemical behavior. While isotopic fractionation of Tl derived from anthropogenic activities (e.g., mining, smelting) have been reported, there is limited information regarding Tl influenced by both natural weathering processes and anthropogenic origins. Herein, we investigated, for the first time, the Tl isotopic compositions in soils across a representative Tl-rich depth profile from the Lanmuchang (LMC) quicksilver mine (southwest China) in the low-temperature metallogenesis zone. The results showed significant variations in Tl isotope signatures (ε205Tl) among different soil layers, ranging from -0.23 to 3.79, with heavier isotope-205Tl enrichment observed in the bottom layers of the profile (ε205Tl = 2.18-3.79). This enrichment of 205Tl was not solely correlated with the degree of soil weathering but was also partially associated with oxidation of Tl(I) by Fe (hydr)oxide minerals. Quantitative calculation using ε205Tl vs. 1/Tl data further indicated that the Tl enrichment across the soil depth profile was predominantly derived from anthropogenic origins. All these findings highlight that the robustness and reliability of Tl isotopes as a proxy for identifying both anthropogenic and geogenic sources, as well as tracing chemical alterations and redox-controlled mineralogical processes of Tl in soils. The nascent application of Tl isotopes herein not only offers valuable insights into the behavior of Tl in surface environments, but also establishes a framework for source apportionment in soils under similar circumstances.

5.
Environ Pollut ; 335: 122262, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37506804

RESUMO

Even though uranium (U) is considered to be an essential strategic resource with vital significance to nuclear power development and climate change mitigation, U exposure to human and ecological environment has received growing concerns due to its both highly chemically toxic and radioactively hazardous property. In this study, a composite (M-BC) based on Ficus macrocarpa (banyan tree) aerial roots biochar (BC) modified by δ-MnO2 was designed to separate U(VI) from synthetic wastewater. The results showed that the separation capacity of M-BC was 61.53 mg/g under the solid - liquid ratio of 1 g/L, which was significantly higher than that of BC (12.39 mg/g). The separation behavior of U(VI) both by BC and M-BC fitted well with Freundlich isothermal models, indicating multilayer adsorption occurring on heterogeneous surfaces. The reaction process was consistent with the pseudo-second-order kinetic model and the main rate-limiting step was particle diffusion process. It is worthy to note that the removal of U(VI) by M-BC was maintained at 94.56% even after five cycles, indicating excellent reusability and promising application potential. Multiple characterization techniques (e.g. Scanning Electron Microscope-Energy Dispersive Spectrometer (SEM-EDS), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Brunauer-Emmett-Teller (BET) and X-ray Photoelectron Spectroscopy (XPS)) uncovered that U(VI) complexation with oxygen-containing functional groups (e.g. O-CO and Mn-O) and cation exchange with protonated ≡MnOH were the dominant mechanisms for U(VI) removal. Application in real uranium wastewater treatment showed that 96% removal of U was achieved by M-BC and more than 92% of co-existing (potentially) toxic metals such as Tl, Co, Pb, Cu and Zn were simultaneously removed. The work verified a feasible candidate of banyan tree aerial roots biowaste based δ-MnO2-modified porous BC composites for efficient separation of U(VI) from uranium wastewater, which are beneficial to help address the dilemma between sustainability of nuclear power and subsequent hazard elimination.


Assuntos
Urânio , Poluentes Químicos da Água , Humanos , Águas Residuárias , Urânio/análise , Óxidos , Porosidade , Compostos de Manganês , Carvão Vegetal/química , Adsorção , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
6.
Chemosphere ; 336: 139089, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37285985

RESUMO

Arsenic (As) is a potentially toxic element with variable valence states. Due to high toxicity and bioaccumulation, As can pose a severe threat to the quality of the ecology as well as human health. In this work, As(III) in water was effectively removed by biochar-supported copper ferrite magnetic composite with persulfate. The copper ferrite@biochar composite exhibited higher catalytic activity than copper ferrite and biochar. The removal of As(III) could reach 99.8% within 1 h under the conditions of initial As(III) concentration at 10 mg/L, initial pH at 2-6, and equilibrium pH at 10. The maximum adsorption capacity of As(III) by copper ferrite@biochar-persulfate was 88.9 mg/g, achieving superior performance than mostly reported the metal oxide adsorbents. By means of a variety of characterization techniques, it was found that ∙OH acted as the main free radical for removing As(III) in the copper ferrite@biochar-persulfate system and the major mechanisms were oxidation and complexation. As a natural fibre biomass waste-derived adsorbent, ferrite@biochar presented a high catalytic efficiency and easy magnetic separation for As(III) removal. This study highlights the great potential of copper ferrite@biochar-persulfate application in As(III) wastewater treatment.


Assuntos
Arsênio , Poluentes Químicos da Água , Humanos , Águas Residuárias , Cobre , Carvão Vegetal/química , Poluentes Químicos da Água/análise , Adsorção
7.
Sci Total Environ ; 882: 163404, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059145

RESUMO

Thallium (Tl) is a highly toxic heavy metal, which is harmful to plants and animals even in trace amounts. Migration behaviors of Tl in paddy soils system remain largely unknown. Herein, Tl isotopic compositions have been employed for the first time to explore Tl transfer and pathway in paddy soil system. The results showed considerably large Tl isotopic variations (ε205Tl = -0.99 ± 0.45 ~ 24.57 ± 0.27), which may result from interconversion between Tl(I) and Tl(III) under alternative redox conditions in the paddy system. Overall higher ε205Tl values of paddy soils in the deeper layers were probably attributed to abundant presence of Fe/Mn (hydr)oxides and occasionally extreme redox conditions during alternative dry-wet process which oxidized Tl(I) to Tl(III). A ternary mixing model using Tl isotopic compositions further disclosed that industrial waste contributed predominantly to Tl contamination in the studied soil, with an average contribution rate of 73.23%. All these findings indicate that Tl isotopes can be used as an efficient tracer for fingerprinting Tl pathway in complicated scenarios even under varied redox conditions, providing significant prospect in diverse environmental applications.

8.
J Hazard Mater ; 448: 130859, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36736213

RESUMO

Thallium (Tl) is an extremely toxic metal, whose geochemical behavior remains poorly understood. This study aims to clarify the migration pathway and source apportionment of Tl in sediments from a watershed downstream of an open and large-scale pyrite mine area in south China, using high-precised Tl isotopic compositions. Results showed that Tl isotopic fractionations were mainly influenced by the anthropogenic Tl sources in all the sediments as a whole from the studied watershed, while in situ mineral adsorption and biological activity were limited. Moreover, plot of ε205Tl vs. 1/Tl further illustrated that three possible end-members, viz. background sediments, pyrite tailings, and sewage treatment wastes were ascribed to predominant sources of Tl enrichment in the sediments. A ternary mixing model unveiled that waste from pyrite mining activities (i.e., both pyrite tailings and sewage treatment wastes) affected the downstream sediments up to 10 km. All these findings suggest that Tl isotopic signature is a reliable tool to trace Tl sources in the sediments impacted by mining activities. It is highly critical for further target-oriented and precise remediation of Tl contamination.

9.
Sci Total Environ ; 871: 161863, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36716888

RESUMO

Thallium (Tl) is an extraordinarily toxic metal, which is usually present with Tl(I) and highly mobile in aquatic environment. Limited knowledge is available on the adsorption and isotopic variations of Tl(I) to Fe-(hydr)oxides. Herein, the adsorption behavior and mechanism of Tl(I) on representative Fe-(hydr)oxides, i.e. goethite, hematite, and ferrihydrite, were comparatively investigated kineticly and isothermally, additional to crystal structure modelling and Tl isotope composition (205Tl/203Tl). The results showed that ferrihydrite exhibited overall higher Tl(I) adsorption capacity (1.11-10.86 mg/kg) than goethite (0.21-1.83 mg/kg) and hematite (0.14-2.35 mg/kg), and adsorption by the three prevalent Fe-minerals presented strong pH and ionic strength dependence. The magnitude of Tl isotopic fractionation during Tl(I) adsorption to ferrihydrite (αsolid-solution ≈ 1.00022-1.00037) was smaller than previously observed fractionation between Mn oxides and aqueous Tl(I) (αsolid-solution ≈ 1.0002-1.0015). The notable difference is likely that whether oxidation of Tl(I) occurred during Tl adsorption to the mineral surfaces. This study found a small but detectable Tl isotopic fractionation during Tl(I) adsorption to ferrihydrite and heavier Tl isotope was slightly preferentially adsorbed on surface of ferrihydrite, which was attributed to the formation of inner-sphere complex between Tl and ≡Fe-OH. The findings offer a new understanding of the migration and fate of 205Tl/203Tl during Tl(I) adsorption to Fe (hydr)oxides.

10.
Artigo em Inglês | MEDLINE | ID: mdl-36361445

RESUMO

Radiological aspects such as natural radioactivity of 238U, 232Th, 226Ra, 40K combined with potentially toxic metal(loid) (PTM) distribution features were seldom simultaneously investigated in rare earth element (REE) processing activities. This work was designed to investigate the distribution levels of natural radioactivity, air-absorbed dose rate of γ radiation as well as PTMs at a typical REE plant in Guangdong, China. Ambient soils around REE processing facilities were sampled, measured and assessed. The natural radioactivity of radionuclides of the samples was determined using a high-purity germanium γ-energy spectrometer while the air-absorbed dose rate of γ radiation was measured at a height of 1 m above the ground using a portable radiometric detector. The PTM content was measured by inductively coupled plasma mass spectrometry (ICP-MS). The results showed that the specific activities of the radionuclides ranged from 80.8 to 1990.2, 68.2 to 6935.0, 78.4 to 14,372.4, and 625.4 to 2698.4 Bq·kg-1 for 238U, 226Ra, 232Th, and 40K, respectively, representing overwhelmingly higher activity concentrations than worldwide soil average natural radioactivity. The radium equivalent activity and external hazard index of most samples exceeded the limits of 370 Bq·kg-1 and 1, respectively. The measured air-absorbed dose rate of γ radiation was in a range of 113~4004 nGy·h-1, with most sites displaying comparatively higher values than that from some other REE-associated industrial sites referenced. The content levels of PTMs of Cu, Ni, Zn, Mn, Pb, Cd, Cr, and As were 0.7~37.2, 1.8~16.9, 20.4~2070.5, 39.4~431.3, 2.3~1411.5, 0.1~0.7, 6.7~526.1, and 59.5~263.8 mg·kg-1, respectively. It is important to note that the PTM contents in the studied soil samples were 2.1~5.4 times higher for Zn-As and 1.4 times higher for Pb than the third level of the China soil standard while 2.5~13 times higher for Zn-As and 1.2 times higher for Pb than Canadian industry standard. The findings call for subsequent site remediation to secure the ecological environment and human health after the REE processing plant was decommissioned.


Assuntos
Metais Terras Raras , Monitoramento de Radiação , Radioatividade , Rádio (Elemento) , Poluentes Radioativos do Solo , Humanos , Solo/química , Chumbo/análise , Canadá , Rádio (Elemento)/análise , Poluentes Radioativos do Solo/análise , Radioisótopos/análise , Metais Terras Raras/análise , Monitoramento de Radiação/métodos , Espectrometria gama , Radioisótopos de Potássio/análise , Tório/análise
11.
J Hazard Mater ; 424(Pt C): 127594, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34763928

RESUMO

Thallium(Tl), an extremely toxic metal, is posing great hazards to water safety through anthropogenic activities (e.g., Pb-Zn smelter) and natural weathering in riverine systems. However, the relative contribution from each source remains obscure. This study investigated enrichment pattern of Tl and its isotopic compositions in sediment profiles from a recipient river, which was continuously collecting various Tl-bearing wastes discharged from a large Pb-Zn smelter in South China. Results show that high Tl content and ultra-fine particles (~ µm) of Tl-bearing mineral assemblages, probably derived from Pb-Zn smelting wastes, were ubiquitously observed in both of the depth profiles. In addition, the sediments generally yielded intermediate ε205Tl values of -3.76 to 1.01, which resembled those found in smelting wastes. A ternary mixing model was for the first time proposed for quantifying relative Tl contributions from each possible source. The calculation suggests that the smelter wastes are the major contributors, contributing approximately 80% of Tl contamination. All these results indicate that Tl isotope can be used as powerful proxies for quantitatively identifying potential different contributors in the environment. This is of critical importance to further implementation of pollution control and remediation strategy for the riverine systems in the near future.


Assuntos
Rios , Tálio , Efeitos Antropogênicos , China , Monitoramento Ambiental , Sedimentos Geológicos , Isótopos/análise , Tálio/análise
12.
Sci Total Environ ; 803: 150036, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34525718

RESUMO

Thallium (Tl) is a highly toxic trace metal. Lead (Pb)­zinc (Zn) smelting, which is a pillar industry in various countries, is regarded as one of the dominant anthropogenic sources of Tl contamination in the environment. In this study, thallium isotope data have been evaluated for raw material and a set of industrial wastes produced at different stages of Pb-Zn smelting in a representative large facility located by the North River, South China, in order to capture Tl isotope signatures of such typical anthropogenic origin for laying the foundation of tracking Tl pollution. Large variations in Tl isotopic compositions of raw Pb-Zn ores and solid smelting wastes produced along the process chain were observed. The ε205Tl values of raw Pb-Zn ores and return fines are -0.87 ± 0.26 and -1.0 ± 0.17, respectively, contrasted by increasingly more negative values for electrostatic precipitator dust (ε205Tl = -2.03 ± 0.14), lime neutralizing slag (ε205Tl = -2.36 ± 0.18), and acid sludge (ε205Tl = -4.62 ± 0.76). The heaviest ε205Tl (1.12 ± 0.51) was found in clinker. These results show that isotopic fractionation occurs during the smelting processes. Obviously, the lighter Tl isotope is enriched in the vapor phase (-3.75 ε205Tl units). Further XPS and STEM-EDS analyses show that Tl isotope fractionation conforms to the Rayleigh fractionation model, and adsorption of 205Tl onto hematite (Fe2O3) may play an important role in the enrichment of the heavier Tl isotope. The findings demonstrate that Tl isotope analysis is a robust tool to aid our understanding of Tl behavior in smelting processes and to provide a basis for source apportionment of Tl contaminations.


Assuntos
Tálio , Zinco , Monitoramento Ambiental , Resíduos Industriais , Isótopos/análise , Chumbo , Tálio/análise
13.
Brain Res Bull ; 176: 85-92, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34418462

RESUMO

OBJECTIVES: Postmenopausal osteoporosis (PMO) and osteoporotic fracture seriously impair human health in developed countries. The present study aims to explore whether sensory nerves, calcitonin gene-related peptide (CGRP), and brain-derived serotonin are related to bone loss in ovariectomized (OVX) rats. METHODS: Female rats were grouped into the ovariectomized (OVX) and sham surgery (SHAM) groups. Immunocytochemistry, western blotting, and qPCR were performed to detect CGRP expression in the femurs. The expression levels of serotonin and CGRP in the spinal cord and brainstem were estimated using western blotting, immunofluorescence, and qPCR. ELISA was used to evaluate the serum biomarkers of bone formation and resorption. Bone mineral density was measured using dual-energy X-ray (DXA) analysis. Femur microstructure was imaged by Micro CT. P values less than 0.05 were considered statistically significant. RESULTS: ELISA showed that serum bone alkaline phosphatase (BALP), tartrate-resistant acid phosphatase (TRAP), ß-crosslaps, and ß-ctx were increased in the OVX group. In the OVX group, in vivo bone mineral density, trabecular bone mineral density, bone volume fraction (BV/TV), and trabecular number (Tb. N) were significantly decreased, while trabecular spacing (Tb. Sp) and trabecular bone pattern factor (Tb. Pf) were markedly increased. In the OVX group, the expression levels of CGRP of the femur were significantly downregulated. In contrast, CGRP and serotonin expression was increased in the spinal cord of the OVX group. Serotonin expression was increased in the brainstem, brainstem nucleus raphe magnus (RMG), and nucleus raphe dorsalis (DRN). CONCLUSION: Our results indicated that the activation of osteoclast triggered the release of CGRP from nociceptive sensory nerve fibers and transmitted this painful stimulus to the dorsal horn of the spinal cord to release increased CGRP. The descending serotonergic inhibitory system was activated by increased CGRP levels of the spinal cord and promoted serotonin release in the brainstem RMG, DRN, and the spinal cord, contributing to the decreased CGRP level in bone tissue, which revealed a novel mechanism of bone loss in PMO.


Assuntos
Densidade Óssea/fisiologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Osteoporose/metabolismo , Serotonina/metabolismo , Absorciometria de Fóton , Fosfatase Alcalina/sangue , Animais , Osso e Ossos/diagnóstico por imagem , Tronco Encefálico/metabolismo , Feminino , Osteoporose/diagnóstico por imagem , Ovariectomia , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Fosfatase Ácida Resistente a Tartarato/sangue
14.
Technol Health Care ; 29(S1): 153-164, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33682755

RESUMO

BACKGROUND: The SARS-CoV-2 pneumonia infection is associated with high rates of hospitalization and mortality and this has placed healthcare systems under strain. Our study provides a novel method for the progress prediction, clinical treatment and prognosis of NCP, and has important clinical value for timely treatment of severe NCP patients. OBJECTIVE: To summarize the clinical features and severe illness risk factors of the patients with novel coronavirus pneumonia (NCP), in order to provide support for the progression prediction, clinical treatment and prognosis of NCP patients. MATERIALS AND METHODS: A total of 196 NCP patients treated in our hospital from January 25, 2020 to June 21, 2020 were divided into the severe group and the mild group. The clinical features of the two groups were analyzed and compared. The risk factors were explored by using multivariate logistic regression, and the receiver operating characteristic (ROC) curve was obtained. The correlations of the risk factors with the prognosis of NCP were investigated combined with the lung function test. RESULTS: The primary clinical symptoms of 196 cases of NCP included fever in 167 cases (85.2%) and cough in 121 cases (61.73%). The chest computed tomography (CT) scans of the 178 cases (90.81%) showed a typical ground-glass opacification. In 149 cases, the lymphocyte count was decreased, while the levels of creatine kinase (CK), lactate dehydrogenase (LDH), c-reactive protein (CRP), erythrocyte sedimentation rate (ESR) and D-dimer (D-D) increased. 44 cases (22.45%) were found to be severely ill. The multivariate logistic regression analysis demonstrated that age, underlying disease, length of hospital stay, body mass index (BMI), LDH, chest CT visual score, absolute lymphocyte count (ALC) and CRP were risk factors for severe.


Assuntos
COVID-19/diagnóstico por imagem , COVID-19/fisiopatologia , Pneumonia Viral/diagnóstico por imagem , Pneumonia Viral/fisiopatologia , Adulto , Idoso , Índice de Massa Corporal , COVID-19/mortalidade , China , Comorbidade , Progressão da Doença , Feminino , Testes Hematológicos , Humanos , Tempo de Internação , Modelos Logísticos , Pulmão/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Pneumonia Viral/mortalidade , Prognóstico , Curva ROC , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2 , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X
15.
Environ Pollut ; 266(Pt 3): 115252, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32717591

RESUMO

Thallium (Tl) is a dispersed trace metal showing remarkable toxicity. Various anthropogenic activities may generate Tl contamination in river sediments, posing tremendous risks to aquatic life and human health. This paper aimed to provide insight into the vertical distribution, risk assessment and source tracing of Tl and other potentially toxic elements (PTEs) (lead, cadmium, zinc and copper) in three representative sediment cores from a riverine catchment impacted by multiple anthropogenic activities (such as steel-making and Pb-Zn smelting). The results showed high accumulations of Tl combined with associated PTEs in the depth profiles. Calculations according to three risk assessment methods by enrichment factor (EF), geoaccumulation index (Igeo) and the potential ecological risk index (PERI) all indicated a significant contamination by Tl in all the sediments. Furthermore, lead isotopes were analyzed to fingerprint the contamination sources and to calculate their quantitative contributions to the sediments using the IsoSource software. The results indicated that a steel-making plant was the most important contamination source (∼56%), followed by a Pb-Zn smelter (∼20%). The natural parental bedrock was found to contribute ∼24%. The findings highlight the importance of including multiple anthropogenic sources for quantitative fingerprinting of Tl and related metals by the lead isotopic approach in complicated environmental systems.


Assuntos
Metais Pesados/análise , Poluentes Químicos da Água/análise , China , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Metais/análise , Medição de Risco , Rios , Tálio/análise
16.
J Environ Manage ; 262: 110251, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32090881

RESUMO

Thallium (Tl) is an extremely toxic element, whose toxicity is even higher than mercury, arsenic, and cadmium. It is of great significance to hinder the migration and transfer of Tl from soils to the plants. A synthetic mineral amendment (SMA), mainly composed of different silicates, was evaluated for its effects on the transformation and retention of Tl in two typical highly Tl-contaminated soils from Southwest China. The results indicated that the addition of mineral amendment increased the soil of the pH by 0.46-2.13 units and distinctly reduced the content of active thallium in the soils. The extent of Tl reduction was related to the morphological characteristics of the original soil In particular, the application of the mineral amendment transformed 25.8-52.5% of the active Tl fractions in the soils to the residual fraction at 60 d. Adding mineral amendment to the soils can provide conditions to facilitate Tl to enter the silicate crystal lattice. The results of XPS evidenced that the proportion of Tl(I) in the soil was greatly reduced after adding the mineral amendment.


Assuntos
Poluentes do Solo , Tálio , China , Monitoramento Ambiental , Minerais , Solo
17.
J Hazard Mater ; 384: 121378, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31606707

RESUMO

Thallium (Tl) is typical rare element with severe toxicity comparable to Hg and Pb. To track Tl pollution, isotopic fractionation of Tl was evaluated during pyrite smelting for sulfuric acid production. Large variations in Tl isotope compositions were observed among the pyrite ore (PO) and its four different smelting wastes. The starting raw PO had an ε205Tl value of +1.28. The fluidized-bed furnace slag generated by high-temperature smelting had the heaviest ε205Tl (+16.24) in the system. Meanwhile, the boiler fly ash (ε205Tl = +8.34), cyclone fly ash (ε205Tl = +2.17), and electrostatic precipitation fly ash (ε205Tl = -1.10), with decreasing grain sizes during the treatment processes, were characterized by elevated levels of Tl contents and substantial enrichment in the light Tl isotopes relative to the furnace slag. Further calculation and high-resolution transmission electron microscopy indicated that Tl isotope fractionation could be governed by both Rayleigh-type fractionation and adsorption of volatilized Tl by particles of various grain sizes. According to the substantial differences in the PO from its smelting wastes and the measurement precision of isotopic fractionation, it is suggested that Tl isotopes can serve as a new tool for tracing pollution of Tl.

18.
Sci Total Environ ; 703: 135547, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31761365

RESUMO

As an element with well-known toxicity, excessive thallium (Tl) in farmland soils, may threaten food security and induce extreme risks to human health. Identification of key contamination sources is prerequisite for remediation technologies. This study aims to examine the contamination level, health risks and source apportionment of Tl in common vegetables from typical farmlands distributed over a densely populated residential area in a pyrite mine city, which has been exploiting Tl-bearing pyrite minerals over 50 years. Results showed excessive Tl levels were exhibited in most of the vegetables (0.16-20.33 mg/kg) and alarming health risks may induce from the vegetables via the food chain. Source apportionment of Tl contamination in vegetables was then evaluated by using Pb isotope fingerprinting technique. Both vegetables and soils were characterized with overall low 206Pb/207Pb. This indicated that a significant contribution may be ascribed to the anthropogenic activities involving pyrite deposit exploitation, whose raw material and salgs were featured with lower 206Pb/207Pb. Further calculation by binary mixing model suggested that pyrite mining and smelting activities contributed 54-88% to the thallium contamination in vegetables. The results highlighted that Pb isotope tracing is a suitable technique for source apportionment of Tl contamination in vegetables and prime contamination from pyrite mining/smelting activities urges authorities to initiate proper practices of remediation.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Monitoramento Ambiental , Poluentes do Solo/análise , Tálio/análise , Verduras/química , China , Fazendas , Cadeia Alimentar , Humanos , Mineração , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...